ELV Payload Safety Program Workshop
Green Propulsion Update
Outline

• Introduction to green propellant

• PRISMA spacecraft

• TDM solicitation and GPIM

• MSFC green propulsion roadmap

• Green auxiliary power units

• Future green thruster testing at MSFC

• Green thruster scale up

• Future mission opportunities

• Summary
Potential replacement to Hydrazine

Performance/Environmental/Safety Challenge

Hydrazines are SOTA spacecraft fuel:

- Increased Operations Costs:
 - Carcinogenic Vapor (Respiratory Route)
 - Dermal Toxicity
 - Strong Reducing Agent
 - Flammable (LEL = 4.7%, UEL = 100%)
- On-Orbit Propulsion Systems Affected

<table>
<thead>
<tr>
<th>System</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>FltSatCom</td>
<td>Communications</td>
</tr>
<tr>
<td>STARDUST</td>
<td>Deep Space Probe</td>
</tr>
<tr>
<td>INTELSAT</td>
<td>Communications</td>
</tr>
<tr>
<td>HEAO-B</td>
<td>X-Ray Astronomy</td>
</tr>
</tbody>
</table>
- Hundreds of Satellites Use Hydrazine for RCS & ACS

2011 Tommy Hawkins/AFRL Briefing to Partners in Environmental Technology Conference
Distribution Statement A: Approved for Public Release; Distribution Unlimited
Hawkins Cont’d

Energetic Ionic Liquids
Avenues to Lower Toxicity & Higher Performance

• History
 – An ionic compound that has a melting point at or below 100°C
 – Seminal work at USAFA (Wilkes et al.)
 – Industrial solvents, green chemistry
 – Low vapor pressure, low vapor toxicity
 – Wide solubility ranges

• ILs as Energetic Materials
 – First energetic ILs: chemical oddities
 – AFRL realizes chemical structure manipulation leads to new classes of highly, energy dense materials (HEDM) for advanced propulsion

Distribution Statement A: Approved for Public Release; Distribution Unlimited
‘Greener’ Chemical Propulsion—ILs in Advanced Monopropellants

ADN (M.P. 92°C) is also an Energetic Ionic Liquid

- ADN-based monopropellant (LMP-103S) from ECAPS, Swedish Space Corporation
- High performance ‘green’ propellant (30% improved Isp*Density vs. hydrazine)
- 1 N Thruster using thermal and catalytic ignition flight qualified and flown (PRISMA)

AF-M315E is US Air Force IL-Based Monopropellant

- Significant physical property and performance advantages (50% improved Isp*Density)
- Ongoing hardware developments

<table>
<thead>
<tr>
<th>Properties</th>
<th>LMP-103S</th>
<th>AF-M315E</th>
<th>Hydrazine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isp vac, lbf sec/lbm (e = 50:1 P_c = 300 psi)</td>
<td>252 (theor.) 235 (del)</td>
<td>266 (theor.) ~ 250 (del)</td>
<td>242 (theor.)</td>
</tr>
<tr>
<td>Density, g/cc</td>
<td>1.24</td>
<td>1.465</td>
<td>1.01</td>
</tr>
<tr>
<td>Vapor Pressure (torr)</td>
<td>Ammonia Methanol H2O</td>
<td><0.1 (w/o H2O)</td>
<td>14.3</td>
</tr>
</tbody>
</table>

* Sjoberg et al., Innsitive Munitions & Energetic Materials Technology Symp. Proc., Tucson, USA, May 11-14, 2009

Why “Green”

- What is “Green” Propellant:
 - Are there environmental issues with production?
 - How well does it transport/off-load?
 - What are the bi-products of combustion?
- Performance and Characteristics:
 - Storable Liquid monopropellant
 - High Specific and Density Impulse
 - Good pulse performance
- Safety:
 - Low Sensitivity & Toxicity
 - Non Carcinogenic
 - Environmentally Benign
- Lower overall mission cost:
 - Easy to handle and transport
 - Compatible with available COTS
Prisma Satellite – Launched June 2010

Mango
- 3-axis stabilized
- Attitude Independent Orbit Control
- 100 m/s Delta-V
- 145 kg launch mass
- 2.6 m “wing-span”
- 3 propulsion systems
- 4 RF systems

Tango
- 3-axis stabilized
- Solar Magnetic control
- No orbit control
- 40 kg launch mass

(Artists Impression – Courtesy of DLR)
Blended ADN Propellant

LMP-103S

ADN-Based Liquid Storable ”Green” Monopropellant

Higher performance:
- Isp >6%
- Density Impulse >30%

Reduced personal and environmental hazards:
- Low sensitivity
- Low toxicity
- Non carcinogenic

Simpler to transport and handle:
- SCAPE not required
- Approved for air transportation

Exhaust species

- ADN + Solvent + Fuel + Stabilizer
- Exhaust species:
 - H₂O
 - CH₃OH
 - NH₃
 - H₂
 - CO
 - CO₂
Basic Characterization Testing

- Material compatibility
- Storage temperature range
- Long-term storability
- Radiation tolerance
- UN transport classification
- Safety tests
- Chemical and physical properties
PRISMA Loading Advantages

PRISMA Launch Campaign

- LMP-103S is UN class 1.4S transport certified
 - Propellant was transported as air cargo together with the satellites and associated GSE
- HPGP operations required:
 - 3 partial working days (leak checks, fueling & pressurization, decontamination)
- All handling of LMP-103S (i.e. loading/de-loading, decontamination) declared by Yasny Range Safety as “Non-hazardous operations”
- Propellant Loading/De-loading did not require SCAPE operations
 - LMP-103S is not sensitive to exposure to air or humidity
- Only limited decontamination of the loading cart was required at the launch site:

<table>
<thead>
<tr>
<th></th>
<th>Hydrazine</th>
<th>HPGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxic Waste</td>
<td>470 kg</td>
<td>3 kg</td>
</tr>
<tr>
<td>Propellant Waste</td>
<td>29 kg</td>
<td>1 kg</td>
</tr>
</tbody>
</table>

- A 2/3 cost reduction was realized for HPGP propellant, transportation and fueling (as compared to the hydrazine system flown)

www.sscspace.com/ecaps
LMP-103S Safety & Handling

Fueling:
• Using SCAPE’s are not required.
• LMP-103S is not sensitive to exposure to air or humidity.

Leak and Spills:
• Ammonia detectors can be used.
• LMP-103S spills should be taken up using adequate quantities of vermiculite absorbent.
• The saturated granules should be collected and stored in a suitable polyethylene container.
• The container and any other contaminated materials should be disposed.

Decontamination:
• Wash contaminated areas with plenty of water.
• Provide ventilation until all ammonia and methanol vapors are removed.
Status of MSDS

Apr 2008

ECAPS

SPACECRAFT PROPULSION SYSTEM

Contractual Document

Title of Document: Propellant LMP-1035 MSDS

Registration Number: DOX-RBS-46304 Issue Date: 2008-04-21

Contract: ESA Phase 3

Work Package Number: WP2000

Prepared By:

Date: 2008-04-17

Approved By:

Date: 2008-04-18

Released By:

Date: 2008-04-21

This document contains confidential information proprietary to ECAPS and its suppliers and may not be used, reproduced, published or distributed in any form in whole or in part without prior authorization from ECAPS.

COMPANY CONFIDENTIAL

Dec 2011

Apr 2013

MATERIAL SAFETY DATA SHEET

MSDS No. 419C

Date issued: 07/25/2011

Date Revised: 12/19/2011

Approved By: A. Ignaz

I. PRODUCT IDENTIFICATION

A. Trade Name and Synonyms: LMP-1035, Liquid monopropellant

B. DOT Description and Shipping Classification: An as yet unclassified. Shipped in quantities of not more than 25 grams under DOT-SIP 13481 special permit as UN1178, Articles, explosive, n.o.s. (Ammunition detonite), 1.4E. Special permit shipping authorization expired May 31, 2013.

C. DOT Description and Shipping Classification: For the purpose of shipping the samples of LMP-1035 in Special Packaging for examination only, the following tentative shipping description and classification is assigned: Propellant, liquid, UN1895, 1.3C, CA-1996090005.

D. DOT Description and Shipping Classification: For the purpose of shipping the samples of LMP-1035 in Special Packaging for examination only, the following tentative shipping description and classification is assigned: Substance, explosive, n.o.s. (Ammunition detonite, methanol), UN1970, 1.1D, CA-1996090005.

II. PHYSICAL DATA

A. Appearance and Odor: Clear to light yellow liquid; odd, pungent odor

B. Volatilities: Methanol, Ammonia

III. PHYSICAL DATA

A. Physical Form: Liquid

B. Odor: None

C. Hazardous Contents: Hydrazine monomethyl nitrate (HAN)-based propellant

D. Specific Gravity: 1.48

E. Flash Point: Not Applicable

F. Autoignition Temperature: >400°C (flame temperature onset for slow cool-off)

G. Flammable Limits in Air (% by Volume): Lower: Not Applicable

H. Unstable: Not Applicable

I. Unstable: Not Applicable

J. Thermal Stability: Stable

K. Chemical Stability: Stable

L. Presence of Other Substances: None
TDM Solicitation

• After presenting to this forum in Dec 2011, I held a Green Propulsion TIM at KSC in January 2012.

• Coinciding with that meeting was the BAA announcement for the Technology Demonstration Mission focused on green propulsion.

• The BAA solicited demonstrations of monopropellant alternatives:
 – in-space RCS
 – in-space primary propulsion
 – launch vehicle RCS
 – launch vehicle power generation

• When the dust had settled, 16 proposals were received competing for a cost cap of $50M and a single award was granted in Aug 2012.
Objective:
In-space demonstration of a green monopropellant propulsion system with the purpose of infusing the technology into the marketplace.

Approach/Status:
- Three-year program to develop and fly AF-M315E monopropellant propulsion system
 - Base period: Ground testing of thrusters to TRL 7
 - Option 1: Qualification of propulsion system to TRL 7
 - Option 2: 60-day, on-orbit demonstration of propulsion system to TRL 9
- GPIM team led by Ball Aerospace with AFRL, NASA GRC, and Aerojet as co-investigators; mission support from USAF SMC and NASA KSC
- Launch scheduled for September 2015
MSFC approach to future

- History of taking mid-range TRL propulsion technologies to flight.

- Basic elements of green propulsion:
 - MSFC interested in the system solution, replacing hydrazine for both spacecraft propulsion as well as auxiliary power units for booster gimballing.
 - Agnostic about propellants, want to see more than one succeed to maximize usage by industry and government.
 - Scale up thruster technology to the 100-200 lbf class (440 to 880N).
 - Infuse the hardware, as thruster classes mature, into near term missions to expedite acceptance by community.
 - Safety protocol by various ranges can create precedence for the different propellant mixtures.
MSFC Green Propulsion Roadmap

Current activities:
- TDM investment in GPIM.
- MSFC is testing 0.2 lbf AF-M315E and 5 lbf LMP-103S thrusters.
- MSFC utilizing discretionary funds to test green prop in power units.

Pilot test projects leading to scale up:
- Use of green prop in F-16 EPU’s.
- Materials compatibility and stability testing.
- Flight results of GPIM.
- Use of advanced manufacturing to reduce costs and schedule.

Future implementation:
- Scale up thruster technology to 100 lbf class.
- Integrate thrusters into cubesat and LEO sat missions.
- Focus on duty cycles for HEOMD thrusters and sustained thrust for landers.
- Demonstrate in APU hardware.

Pre-2012
- The Swedes have worked over the past decade with propellant blends, material compatibility and resultant space mission with PRISMA.
- The USAF investigates their propellant blend.

International

WE ARE HERE!

MSFC leadership in green propulsion will enable replacement of hydrazine monopropellant over a large range of applications.
Continued interest from MSFC

• MSFC purchased a 22N green propellant thruster from ATK & ECAPS in August 2012.
 – Acceptance testing in Sweden was completed in March 2014 with continued testing at MSFC planned.

• Flight Programs and Partnerships Office funded excess hardware shipment to MSFC.
 – 2 F-16 emergency power units from the Davis-Monthan AFB.
 – Spare gas generator previously used on SRB APU for nozzle gimbal.
 – 30+ year old Orbiter-heritage APU from WSTF.
 – Myriad of power unit components from KSC.

• MSFC Engineering purchased 0.1N and 1N AF-M315E thrusters and have begun test campaigns.

• Center Innovation and SLS Advanced Development have funded testing of EPU’s and thrusters at MSFC.
APU Test Plan

(2) F-16A EPUs

Phase 1 Feasibility Testing

Phase 2 Gas Generator Testing

Phase 3 System Testing

SRB GG5116

Orbiter APU Engineering Test Unit S/N-008

Additional hardware being excessed from SLS Core Stage:
- 9 gas generators
- 2 gas generator valve modules
Status of APU Feasibility testing

- MSFC received key drawings, operations manuals and acceptance test procedures for the F-16 EPU.

- In collaboration with AFRL, we are working on reactivity of Hydroxyl Ammonium Nitrate (HAN) based propellants for use in power generation.

- MSFC has removed a gas generator (GG) from one assembly and are preparing to test.

- Based on the EPU GG testing, we will reinstall into assembly for additional testing.

- MSFC has had discussions with Edwards Air Force Base about a ground demo with F-16.
22N Acceptance Testing, Grindsjon, Sweden

- 0.5 kg throughput
- 22 test sequences
- 3 test pressures
- 200 pulses
- 10 sec max firing time
- 1.2 minutes total duration

Propellant Area

FLIR Camera to detect any leaks

Thruster inside vacuum chamber
Aerojet has also built a 220N thruster and is beginning test campaigns.
Upcoming Missions

• GPIM is currently scheduled to fly in late 2015.
 – 1st flight from domestic source at KSC.

• Skybox Imaging has purchased 13 shipsets of LMP-103S hardware (52 thrusters plus spares).
 – Skysat-3 launch scheduled for 3rd quarter 2015 from India.
 – 6 more Skysats will launch on Minotaur C from VAFB late 2015/early 2016.

• Sierra Nevada selected by USAF Space Test Program to fly STPSat-5 in late 2016.
 – Will utilize (4) 1N LMP-103S thrusters.

• MSFC would like to see industry adopt use of green thrusters in ascending thrust classes as they become available.
Summary of Center Involvement

• MSFC is engaged on the system solution: thrusters and power units.

• GRC is working plume diagnostics/modeling and independent thruster testing on GPIM.

• GSFC is working slosh characteristics on GPIM tank.

• JPL and ARC continually interested to infuse green propellant as potential replacement to hydrazine.

• Mike Gazarik, AA of STMD, has requested MSFC lead the development of an Agency-level green propellant roadmap involving multiple Centers.
 – Tentatively planned for August 2015 in Huntsville.
Backup
How MSFC got involved

- Starting in FY2010, OCE/OCT funded the Nano Energetics Propulsion Project (NEPP) led out of MSFC.
- During the execution of this project, annually-held technology assessment group meetings occurred to evaluated propellant candidates.
- In the Spring of 2011, one of the top oxidizers under consideration was ammonium dinitramide (ADN).
- MSFC was visited by ATK, ECAPS and the Swedish National Space Board to brief their development of an ADN-based monopropellant for use on the PRISMA satellite.
- By Sept 2011, personnel from MSFC, ARC and GSFC traveled to Sweden to participate in PRISMA flight operations, visit the propulsion test facilities and tour the propellant vendor.
- MSFC has become more active in the evaluation of the top two leading green propellants: LMP-103S and AF-M315E.
MSFC In-Space Propulsion Experience

<table>
<thead>
<tr>
<th>Spacecraft or System Name</th>
<th>Most Recent Activity*</th>
<th>Human Rated</th>
<th>Biprop (MMH/NTO)</th>
<th>Mono-prop (N2H4)</th>
<th>Oxygen/Methane</th>
<th>Hydrogen Peroxide, JP-8</th>
<th>Dual Mode</th>
<th>Cold Gas</th>
<th>Non-Toxic</th>
<th>Cryogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotic Lunar Lander</td>
<td>Ongoing</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td>(MMH/MON-25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orion Service Module Propellant Tanks</td>
<td>Ongoing</td>
<td>Yes</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandra</td>
<td>Flying</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ares I Upper Stage ReCS</td>
<td>Ongoing</td>
<td>Yes</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ares I First Stage ReCS</td>
<td>2010</td>
<td>Yes</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ares I-X First Stage ReCS</td>
<td>2009</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCAD LO2/LCH4 Engine</td>
<td>2008</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstration of Automated Rendezvous Technology (DART)</td>
<td>2005</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGLT LO2-Ethanol thruster</td>
<td>2005</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-House 25-lb O2/CH4 Thruster</td>
<td>2005</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital Space Plane</td>
<td>2004</td>
<td>Yes</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-37 Orbital Vehicle (2nd version)</td>
<td>2003</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-38 Deorbit Propulsion</td>
<td>2002</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGLT LO2-LH2 Thruster</td>
<td>2002</td>
<td>No</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-37 (Original version)</td>
<td>2001</td>
<td>No</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Prop Module (for International Space Station (ISS))</td>
<td>2000</td>
<td>Yes</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-33 Reaction Control System (gaseous O2/CH4)</td>
<td>2000</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interim Control Module (ICM) for ISS</td>
<td>1998</td>
<td>Yes</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerosassist Flight Experiment</td>
<td>1994</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Radiation and Release Effects Satellite</td>
<td>1991</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital Maneuvering Vehicle (OMV)</td>
<td>1990</td>
<td>No</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial Upper Stage RCS; Transfer Orbit Stage RCS</td>
<td>1990</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAO (3 spacecraft)</td>
<td>1981</td>
<td>No</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skylab</td>
<td>1977</td>
<td>Yes</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn S-IVB Auxiliary Propulsion System</td>
<td>1973</td>
<td>Yes</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSFC has similar, long history with solid propellants:
- Orion LAM & ACM
- Ares-I motors (USM, BDM, FSTM, BSM)
- STAR motors
- Inertial Upper Stage
- Sounding Rockets