

KTH Department of Energy Technology Division of Energy Systems Analysis

#### LIGHTING UP THE WORLD THE FIRST GLOBAL APPLICATION OF THE OPEN SOURCE, SPATIAL ELECTRIFICATION TOOL (ONSSET)

#### **Researchers:**

Dimitris Mentis Alexandros Korkovelos Shahid Hussain Siyal Paritosh Deshpante Oliver Broad

Mark Howells Holger Rogner

#### Presentation:

Alexandros Korkovelos

A research initiative funded by:



2015 INTERNATIONAL WORKSHOP ON ENVIRONMENT AND ALTERNATIVE ENERGY

November 13th 2015 ESAC, Madrid, Spain



### Introduction

### Nowadays:

- About 2.7 billion people have no access to modern energy services.
- Over 1.3 billion people do not have access to electricity.
- The majority live mainly in rural areas of developing Asia and sub-Saharan Africa.
- Access to energy is crucial for human wellbeing & a country's economic development.







## Sustainable Development Goals

- Agenda 2030 for Sustainable Development by United Nations.
- There are 17 SDGs that are intended as universal goals aiming to develop people, economy and society and to sustain nature, life support and community.
- 7<sup>th</sup> SDG: Ensure access to affordable, reliable, sustainable and modern energy for all by 2030.





### Objective

The main objectives of our research are:

- To develop a methodology to approach the UN 7<sup>th</sup> Sustainable Development Goal in a comprehensive and quantitative way.
- To introduce a toolkit in order to come up with the optimal infrastructure and generation mix for electrification.
- To apply this tool in all countries that do not have 100% access to electricity (i.e. developing Africa, Asia, Latin America and middle East).
- > Support the energy planning for sustainable transition in these counties.



## Importance of energy planning

- Energy planning is essential in order to match demand and supply.
- Cost minimization is a primary objective.
- Considerable modifications in the energy infrastructure are needed.

#### However...

- These modifications are inherently motivated by geospatial questions.
- Ground level geospatial data are of key importance to help identify the most effective electrification strategy.
- In developing countries, there is a lack of reliable energy-related data.



## Why Geographic Information Systems?

The use of GIS serves multiple purposes:

**Location based assessments:** GIS tools enable assessments to analyse energy related geospatial information.

**Remote sensing:** The use of GIS tools facilitates the integration of remote sensing techniques to derive resource availability & energy potentials in cases where such data are not (publically) available.

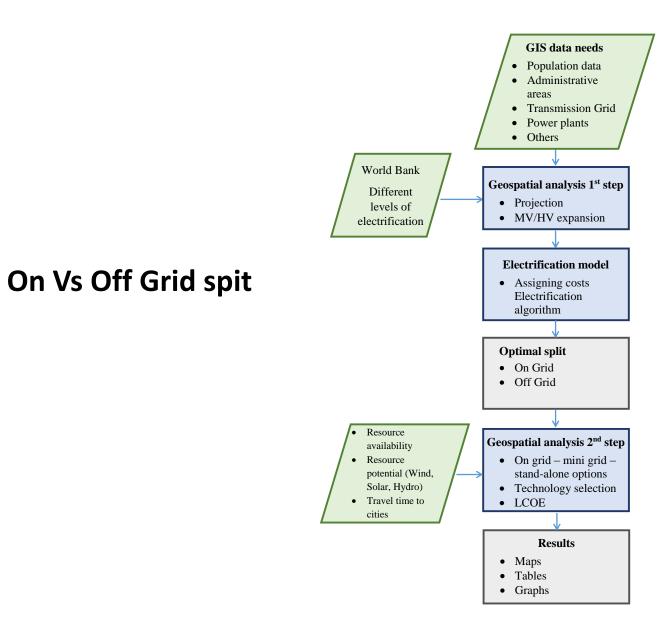
**Illustration of results:** GIS is used to illustrate results in interactive maps, providing an effective science – policy interface.

The integration of GIS in energy system models is still in its infancy.



## OpeN Source Spatial Electrification Toolkit

### **ONSSET Toolkit for:**


- ✓ Identification of most economic electrification mix (technology type)
- ✓ Quantification of investment
- ✓ Geospatial illustration of national electrification targets



# Methodology

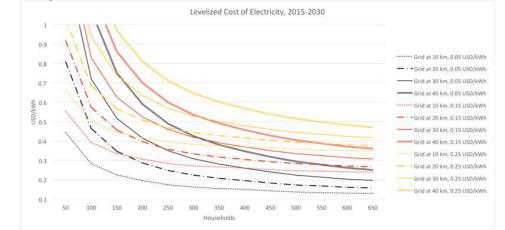
### 1<sup>st</sup> step

- Population projection
- Distance for existing/planned grid
- Cost assumptions





### Cost based electrification model


#### World Bank tiers of electrification:

The analysis is carried out for all the 5 levels of electricity access in order For each GIS settlement, the cost of each electrification technology is to compare how the optimal electrification mix alters with different energy rates.

| Level of access                                                                       | Tier-0                | Tier-1                                           | Tier-2                                                                                       | Tier-3                                                                                      | Tier-4                                                                                                                                            | Tier-5                                                                            |
|---------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Indicative appliances<br>powered                                                      | Torch<br>and<br>Radio | Task lighting<br>+<br>Phone charging<br>or Radio | General<br>lighting<br>+<br>Air<br>circulation<br>+<br>Television;<br>Computing;<br>printing | Tier 2<br>+<br>Small appliances<br>(i.e. General food<br>processing and<br>Washing Machine) | Tier 3<br>+<br>Medium or<br>continuous appliances<br>(i.e. Water heating; Ironing;<br>Water Pumping; Rice<br>cooking, Refrigeration;<br>Miniwave) | Tier 4<br>+<br>Heavy or<br>continuous<br>appliances<br>(i.e. Air<br>Conditioning) |
| Consumption (kWh)<br>per household per year<br>(recommended from the<br>WB framework) | <3                    | 3-66                                             | 67-321                                                                                       | 322-1,318                                                                                   | 1,319 -2,121                                                                                                                                      | >2,121                                                                            |
| Consumption (kWh)<br>per household per year –<br>As calculated in [17]                | -                     | 22                                               | 224                                                                                          | 695                                                                                         | 1800                                                                                                                                              | 2195                                                                              |

#### Technologies compared for energy access:

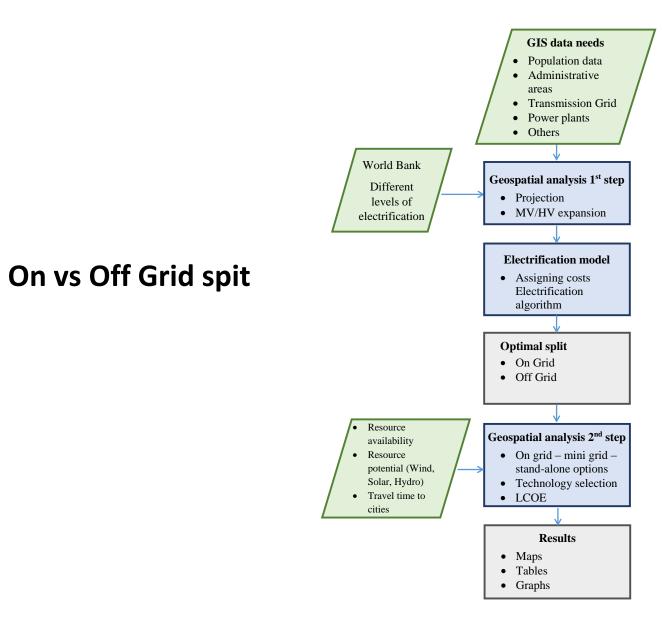
evaluated with a cost model, calculating the LCOEs of the compared technologies.



#### For the **LCOE calculations**, four parameters are considered and connected to costs:

- Population density
- Target level and quality of energy access
- · Local grid connection characteristics and the national cost of grid electricity




### Methodology

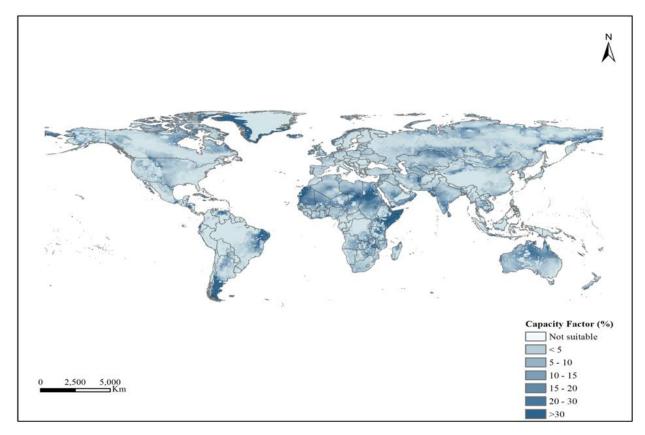
#### <u>1<sup>st</sup> step</u>

- Cost assumptions
- Population projection
- Distance for existing/planned grid

#### 2<sup>st</sup> step

- Renewable resources availability
- Diesel cost estimations





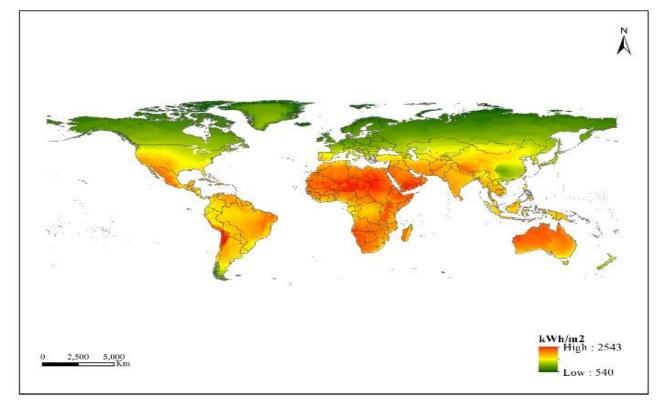

## Geospatial resources assessment (1/4)

#### **Global Wind Capacity Factor**

### Spatial wind power mapping

- Global wind power capacity factor
- 20 year average wind speed data
- 0.5 degrees spatial resolution
- Source: NASA GES DISC



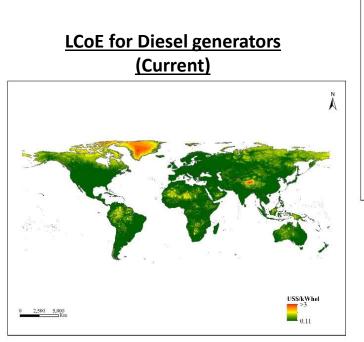



### Geospatial resources assessment (2/4)

**Global Solar Energy Availability** 

### **Spatial solar availability**

- Global Horizontal Irradiation
- 20 year average data
- 1 degree spatial resolution
- Source: Langley Atmospheric
  Science Research Center
  (SSE NASA LaRC POWER
  Project)





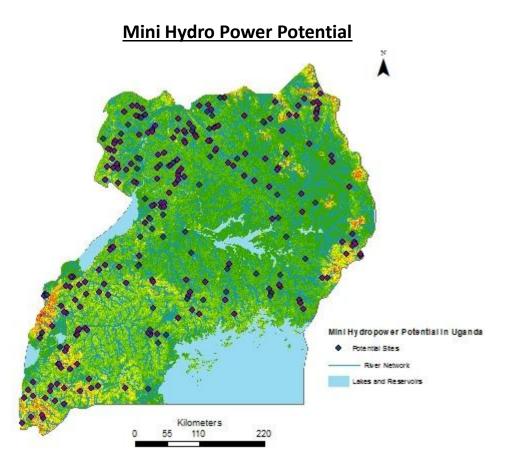

## Geospatial resources assessment (3/4)

### **Spatial LCOE for Diesel gensets**

- Global coastlines
- Characterization of a country as landlocked or coastal
- Travel distance to major cities
- International diesel price (current and projected)






#### LCoE for Diesel generators (Projected)



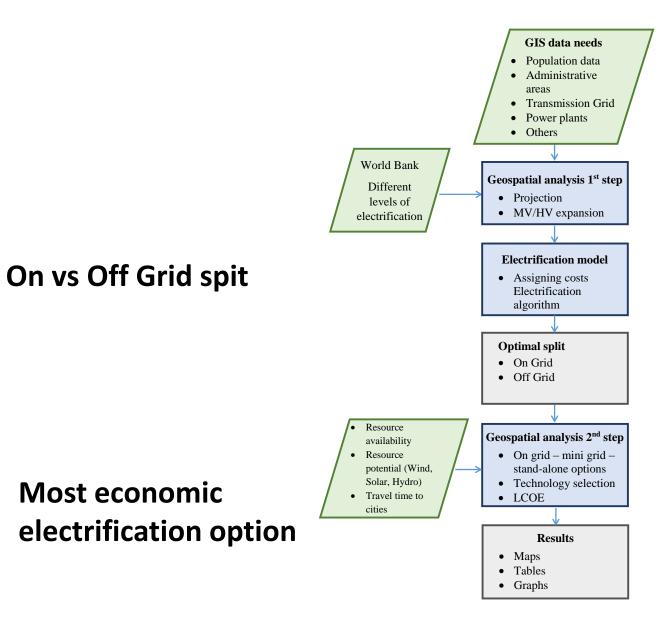
### Geospatial resources assessment (4/4)

### **Spatial Mini Hydropower potential**

- Global Runnoff data (GSCD EU JRC)
- Global River Network (HydroSHEDS)
- Global Digital Elevation Maps (USGS/NASA SRTM)
- 0.5 degrees spatial resolution
- Sources: EU JRC, WWF, CGIAR-CSI





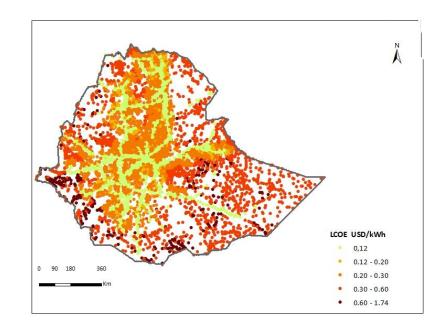

### Methodology

#### <u>1<sup>st</sup> step</u>

- Cost assumptions
- Population projection
- Distance for existing/planned grid

#### 2<sup>st</sup> step

- Renewable resources availability
- Diesel cost estimations
- LCoE for each technology






### Results-Graphical Representation

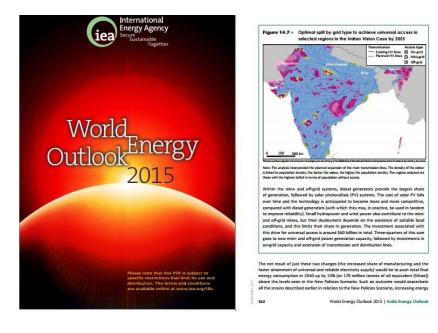

- Administrative areas
- Population data/Demand
- Existing Transmission Network
- Power plants & Mines
- Expansion of HV/MV lines
- Resources potentials
- Optimal Split
- LCoE

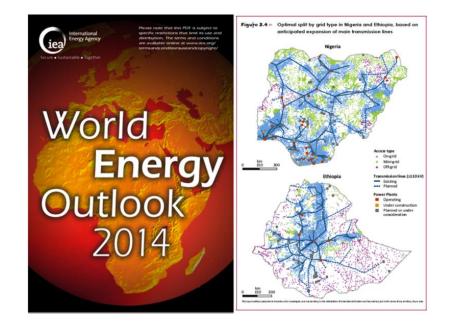
#### **Ethiopia - Case Study**





### Results – Tabular representation





| Item                                                                       | Related physical unit | Unit            |
|----------------------------------------------------------------------------|-----------------------|-----------------|
| Rural access target                                                        | 150                   | kWh/capita/year |
| Urban access target                                                        | 300                   | kWh/capita/year |
| Grid distribution                                                          | 7,844                 | Settlements     |
| Grid distribution                                                          | 25,424,842            | Households      |
| Grid distribution                                                          | 127,124,209           | People          |
| Planned grid expansion (Transmission with HV lines)                        | 5,431                 | km              |
| Grid extensions for those gaining access (Transmission with MV lines)      | 36,343                | km              |
| Grid extensions for those gaining access (Distribution with MV & LV lines) | 513,407               | km              |
| Mini grids distribution                                                    | 915                   | Settlements     |
| Mini grids distribution                                                    | 791,739               | Households      |
| Mini grids distribution                                                    | 3,958,695             | People          |
| Mini grids power generation capacity                                       | 0.34                  | GW              |
| Mini grids power generation                                                | 0.84                  | TWh             |
| Stand alone systems                                                        | 1060                  | Settlements     |
| Stand alone systems                                                        | 131,353               | Households      |
| Stand alone systems                                                        | 656,767               | People          |
| Stand alone systems power generation capacity                              | 0.032                 | GW              |
| Stand alone systems power generation                                       | 0.086                 | TWh             |



### **Publications**

- IEA World Energy Outlook 2014 (Nigeria, Ethiopia)
- IEA World Energy Outlook 2015 (India)





- Elsevier Energy for Sustainable Development : "A GIS based approach for electrification planning – A case study on Nigeria".
- Elsevier Energy: "A Cost Comparison Of Technology Approaches for Improving Access to Electricity Services".



### Conclusions

- The 7<sup>th</sup> Sustainable Development Goal mandates an electrification expansion in many countries.
- The proposed methodology is an attempt to optimize various electrification efforts in the targeted countries with a spatial reference.
- This is a complementary approach to already existing energy planning models that do not consider geospatial characteristics.



### Future work

- Carry out country specific case studies according to national targets.
- Perform the analysis considering higher resolution maps, in order to achieve more representative results.
- Make use of additional geospatial data to identify energy related characteristics (NASA Nighttime light maps).
- Launch an interactive and online database with data for all the unelectrified countries (available in February 2016).



### For further questions please refer to

Alexandros Korkovelos – alekor@desa.kth.se Dimitrios Mentis – dimitris.mentis@desa.kth.se Mark Howells – mark.howells@energy.kth.se

## Thank you