

2014 International Workshop on Environment and Alternative Energy

NASA

Light Trapping in High Efficiency Interdigitated Back Contact Si Solar Cells

Javaneh Boroumand Prof. Debashis Chanda Physics, NSTC, CREOL University of Central Florida

Basic solar cell overview

- Solar spectrum
- Different types of solar cells
- Advantages of c-Si cell

Light Trapping in Thin Film Solar Cells

- Absorption loss and need of light trapping
- Make nano-patterns over large area
- Prior work in thin silicon films
- IBC cell for >20% efficiency
 - Combining Electron and Photon Harvesting

Conclusion

Solar basics

Solar Radiation Spectrum

Different types of solar cells

GaAs

$Cu(In,Ga)Se_2 \sim 1-2 \text{ um}$

c-Si ~ 180 um

http://web.stanford.edu/group/mcgehee/presentations/McGehee2011.pdf

Advantages of c-Si cell

Why c-Silicon solar cell?

- Natural abundance
- Non toxic
- Superior electronic properties
- Chemical/radiation hardness
- Low degradation over time
- Great heat resistant

Near band absorption loss

The absorption depth is the inverse of the absorption coefficient.

For the c-Si case where silicon strongly absorbs blue-green portion of the spectrum, the light trapping scheme is designed to trap light close to silicon band-edge where silicon is a weak absorber.

http://pveducation.org/pvcdrom/design/light-trapping

Need for light trapping

http://pveducation.org/pvcdrom/design/light-trapping

Electromagnetic Design Optimization

Light Trapping Geometry for 6 µm thick c-Si Wafer

(left) Schematic of trapped light inside thin-film silicon wafer as waveguide and cavity modes. The layout of diffractive optics schematic and SEM image of patterned Si surface.

FDTD predicted integrated absorption of AM1.5G spectrum in 6 μ m thick top diffractive optics etched c-Si wafer as a function of grating period (P) and relief depth (RD) for three duty (D/P) cycles of 0.25, 0.5 and 0.75 where D is the diameter of nanopillers.

Absorption of Solar Spectrum

•2D Si Grating Period = 500 nm, W =368 nm, H = 130 nm
•Si Slab = 5.87 μm + H (Total Length Simulation) = 6μm

Soft Lithography

PDMS Mold Making Soft Nanoimprinting PDMS mold Master made using DLW photoresist on substrate fabricate master patterned cast elastomer photoresist etch cure substrate Patterned peel back Substrate **PDMS** mold

Measurements data in 6 µm thick working light

trapping c-Si cells

Microbar c-Silicon Solar Cells

Soft Lithography based Hexagonal Light Trapping Pattern

Period = 500 nm, Relief Depth = 120 nm, Diameter = 375 nm

Light Trapping Efficiency = 9.5%

D. Chanda et. at., Nano Letters, 10, 3041-3046 (2010).

Light Trapping in 2.8 µm thick working c-Si cells

-Overall, efficiency improved by 237% -Max Efficiency = 10.8%

D. Chanda et. at., , Light Trapping in Ultra-thin Mono-crystalline Silicon Solar Cells", (Cover Article) Advanced Energy Materials , (DOI: 10.1002/aenm.201300542), Nov 2013.

Achieve high efficiency in thin c-Si solar cells

Light Trapping Pattern, Surface Passivation and Anti-Reflection Coating

Si nanopillars

APCVD Coated Si nanopillars

On going

IBC cell for > 20% Efficiency

Need combined Electron and Photon Harvesting

Minimizing carrier loss

- Passivation of front and back electrode
- Shallow doped p-n junction
- Locally p+ doped back surface field
- Minimizing photon loss
- Front textured surface.
- Single or multi layer ARC.
- Back contact cell structure
- Minimizing electrical loss
- Fine gridline front contact.
- Selective emitter n- or p-type Si substrate with minority carrier diffusion length longer than the base thickness.

25 µm interdigitated back contact (IBC) cell

-Graded Doping Profile for better Charge Separation -Interdigitated Contacts for better Charge Collection

Achieve 20% efficiency in 25 µm thick c-Si Wafer

The proposed hexagonal nanopillar array based light trapping scheme in presence of back side reflector demonstrated absorption of 78% of integrated solar spectrum in 3 μ m thick c-Si slab which scales up to 90% when implemented on 25 μ m thick wafer.

Fabricating 100 micron IBC cell

Image of hexagonal light trapping nanopillars on Silicon substrate Image of interdigitated contact of 1 cmxcm IBC solar cell Conclusions

 Absorption optimization of thin silicon solar cells with/out light trapping, ARC, BSR is studied and simulated.

- Thin silicon solar cells was fabricated and electronically characterized.
- Nano patterning was developed on large area, 6"×6".
- Ultimate goal is fabricating 25 µm c-Si solar cell with optimized light trapping and broadband coating design to absorb 100% of solar spectrum.

Thank you!

Javaneh@knights.ucf.edu