

Landfill Gas to Liquid Fuels

A comparison of landfill gas treatment options

Ryan A. Kent

University of South Florida

Chemical & Biomedical Engineering Department

What happens to your Trash?

- 251 MM tons/year of municipal solid waste (MSW) is produced in United States.
- Average landfill equivalent energy of 350 barrels oil/day in CH4
- LFG cannot be released into atmosphere and must be treated or used.

What is Landfill Gas?

LFG is composed of 100's of different gases Main components (by volume)

Other gases include small amounts of

- Nitrogen
- Oxygen
- Ammonia
- Sulfides
- Hydrogen
- Carbon monoxide
- non-methane organic compounds (NMOCs)

NMOCs

acrylonitrile, benzene, 1,1-dichloroethane, 1,2-cis dichloroethylene, dichloromethane, carbonyl sulfide, ethyl benzene, hexane, methyl ethyl ketone, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylenes.

Compor	Component	% Composition
CH4		
CO2	CH4	55
Compor	CO2	42
CH4		
CO2	N2	1.7
N2	02	0.4
02	0Z	~0.4
NMOC	H2S	0.07 (700 ppm)
H2S		
	Siloxanes	0.00009 (0.9 ppm)

What is Landfill Gas?

Note: Phase duration time varies with landfill conditions Source: EPA 1997 LFG is produced through three main processes

- Bacterial Decomposition (Most significant contribution)
- Volatilization
- Chemical Reactions

Current Options for Landfill Waste Mitigation

	Positives	Negatives
 Flaring Burns all combustible gases and contaminants Produces waste gases 	CheapEasy	 Wastes Valuable resource
Waste to Electricity • Range of technologies • Mass Burn • Gas Turbine • Advanced Gasification	 Widespread usage Decreases waste landfilled 	 Competes with cheaper power options Low product Value
LFG to LNG/CNG • Compression or Liquefaction of Methane in LFG to form Natural Gas.	 Easily Scalable Produces pipeline quality gas 	 High equipment cost Product competes with cheaper alternatives
	 High value product Widespread usage Domestic Fuel Source 	New processMore complicated process

Why Landfill Gas to Liquid Fuel?

Fuel

- Domestic fuel production
- Storable
- High density fuel source
- Carbon offset
 - Greenhouse gas mitigation
- Use of waste for fuel production

Motivation

Hypothesis: Conversion of waste Landfill Gases into liquid hydrocarbons is a more feasible system than other proposed technologies.

- Problems Faced:
 - Down Scaling of Fischer Tropsch Synthesis Reactor (FTSR)
 - Removing contaminants from LFG
 - Siloxanes
 - Sulfides
 - Halides
 - Modeling a competitive Large scale process
 - Lab scale: 0.1 ft3/min
 - Kinetic Data and Reactor Modeling
 - Full Scale: 2500 ft3/min
 - Using literature and industry data

The Process

Pretreatment

- Required contaminant removal
 - > 250 lb/day of hydrogen sulfide
 - 3 lb/day of siloxanes
- Hydrogen Sulfide Removal
 - Liquid Scavenger
 - Solid Scavenger
 - Liquid Redox
- Siloxanes Removal
 - Adsorption
 - Gas-Liquid extraction

Siloxane

Hydrogen Sulfide

Pretreatment-Hydrogen Sulfide Removal

	Liquid Scavenger	Solid Scavenger	Liquid Redox
Gases treated			
Acid Gas	Yes	Yes	Yes
Natural Gas	Yes	Yes	Yes
Product Streams	Biodegradable liquid	Non-hazardous solid	Sulfur Cake for fertilizer
Cost			
Operating	\$10/lb of S	\$3.50/lb of S	\$0.15/lb of S
Equipment	Low	Moderately Low	Moderately High
General application guidelines	100 lb of Sulfur per day	Less than 300lb of Sulfur per day	less than 20 tons of Sulfur per day

Pretreatment

- Hydrogen Sulfide Removal
 - Two packed beds of iron oxide solid scavenger
 - Lag/Lead Series operation
 - Sulfatreat © and Sulfa-rite © are commonly available scavengers
 - ▶ 0.01-0.02 lb of sulfur removed per lb of solid
- Siloxanes Removal
 - Two beds of either acid washed activated carbon or silica gel will be used.
 - 0.005 0.01 lb of siloxanes removed per lb of packing.
 - Water removal required before entering bed

Tri-Reforming

Catalyst

- Ce_{0.6}Zr_{0.4}O₄ support 8% Ni 8% Mg loaded
- Operated at 800 C and 20 barg
- ~99% conversion of CH4
- 100% conversion higher hydrocarbons

Fisher Tropsch Synthesis

Catalyst

- Silica Eggshell Catalyst
- Silica Core with cobalt surface covered in silica shell
- Increases selectivity via pore sizing
- Operated at 230 C and 20 barg

$$(2n + 1) H_2 + n CO \rightarrow C_n H_{(2n+2)} + n H_2O$$

Separations

The Product

- Hydrocarbons available for Diesel
 - ► ~80% by mole usable
 - ► ~C₉-C₁₉
 - diesel fuel of higher quality than petro chemically derived
- Can produce varying amounts of
 - gasoline components
 - Kerosene available for JP-8 upgrading
 - Light gas for running the plant

Diesel Properties		
Flash Point (C)	56.4	
Freezing Point (C)	-36.2	
Cetane Index	71.35	

Product Composition

Total Capital Investment

Fixed Capital Investment
► \$11.4M
Working Capital
► \$1.7M
▶ 15% of FCI
Land Cost
Assuming Zero or Low Lease

Setup Parameters		
Fixed Capital Investment	\$11.4 Million	
Manufacturing Cost	\$ 5.2 Million	
Yearly Revenue	\$9.4 Million	
Plant Life	15 years	
Operating Days/Year	350	
Depreciation Method	MACRS (9 years)	

Total Capital Investment ~ \$13.1M

Revenue

Diesel

- > 2,022,000 US gallons per year
- \$4.00 per gallon
- ▶ \$8,088,000 per yr
- Low Quality Gasoline Precursor
 - ▶ 842,400 US gallons per year
 - \$1.50 per gallon
 - ▶ \$1,264,000 per yr

Feasibility Analysis

Parameter		
Plant Life	15 years	
Operating Days/Year	350	
Depreciation Method	MACRS (9 years)	
Net Present Worth (NPW) i=15%	\$7.1 Million	
Return on Investment (ROI)	38%	
Discounted Payback Time	~6.5 years	

Cumulative Cash Flow

Discounted Cumulative Cash Flow Diagram

Sensitivity Analysis

Sensitivity of Product Price

Techno-Economic Analysis

Boundary Conditions

- ▶ All facilities compared on 2500 ft³/min
- Piping costs are considered uniform for all facilities
- Estimation based on best technologies in field.
- Selling Prices
 - Electricity: 6 cents/kWh
 - Compressed Natural Gas: \$2.56 GGE
 - Pipeline gas: 9 \$/1000 SCF
 - Price of Diesel: 4 \$/gallon Market Price

Choosing a Technology

	Flaring	Electricity	CNG	Liquid Fuel
FCI (MM \$)	1.0	9.4	9.6	11.4
Operating Cost (MM \$/yr)	0.06	1	4	5.2
Revenue (MM\$/yr)	-	3.5	6.2	9.4
NPW (MM \$)	-1.1	-0.5	1.2	5.9
DCFRR	-	0.13	0.14	.25

Conclusions

Flaring

- ▶ No use for larger installations which could use LFG as a resource
- Electricity
 - Remains a formidable option due to widespread utilization

LFG to CNG

- Shows promise for modular installment but incurs a high operating cost for the product delivered.
- LFG to Liquids has the highest rate of return
 - However the technology also incurs a higher risk
 - Return will increase as diesel prices rise and natural gas price falls

Acknowledgments

- Advisors
 - Dr. John N. Kuhn
 - Dr. Babu Joseph
- Partners in Research
 - Senior Design: Kirk Jaunich, Tyler Stewart, Zachary Kerbo
 - Trash 2 Cash : Devin Walker, Tim Roberge, Ali Gardezi
- Environmental Protection Agency Hinkley Center
- University of South Florida
 - Chemical & Biomedical Engineering
 - Research and Innovation Center
- National Collegiate Inventors and Innovators Alliance

Landfill Gas to Liquid Fuels

Ryan A. Kent

University of South Florida

Chemical & Biomedical Engineering Department

References

- Gardezi, S. A., et al. (in review). "Effect of Catalyst Preparation Conditions on the Performance of Eggshell Cobalt/SiO2 Catalysts for Fischer-Tropsch Synthesis." <u>Catalysis Letters</u>.
- Walker, D. (2012). Catalytic Tri-Reforming of Biomass-Derived Syngas to Produce Desired H2:CO Ratios for Fuel Applications. <u>Chemcial & Biomedical Engineering</u>, University of South Florida. Masters.
- Walker, D. M., et al. (2012). "Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni-MgO-(Ce,Zr)O2 catalysts." <u>Applied Catalysis A: General</u> 445-446: 61-68.
- Gardezi, S. A., et al. (2013). "Thermochemical biomass to liquid (BTL) process: Bench-scale experimental results and projected process economics of a commercial scale process." <u>Biomass and Bioenergy</u> 59: 168-186.
- Läntelä, J., et al. (2012). "Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling." <u>Applied Energy</u> 92: 307-314.
- Themelis, N. J. and P. A. Ulloa (2007). "Methane generation in landfills." <u>Renewable Energy</u> 32(7): 1243-1257.
- Environmental Protection Agency
 - http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
- http://www.merichem.com/company/overview/technical-lit/tech-papers/small-capacit