Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

Phillip Maloney 2014 International Workshop on Environment and Alternative Energy October 23, 2014

Precision Cleaning at KSC

Vital for proper functioning of aerospace hardware

- Levels specified by KSC-C-123-J
 - » 25A most stringent
- Verified by particle counting and non-volatile residue (NVR) analysis

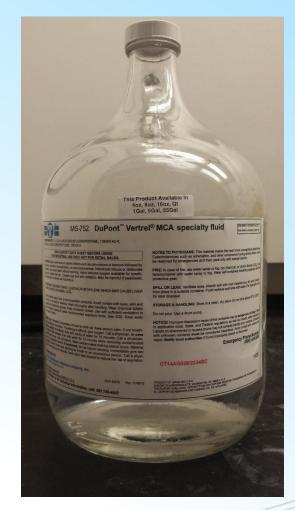
			NVR Contamination Levels		Visible Contamination Levels		
Level	Particle Size Range µm (micrometer)	Maximum Number of Particles per 0.1 m ²	Level	Maximum NVR (mg/0.1 m ²)	Level	Definition	
25	<5 5 to 15 >15 to 25 >25	Unlimited* 19 4 0	А	1.0	GC	Freedom from manufacturing residue, dirt, oil, grease, etc.	

History and Legacy at KSC

Have previously used halogenated solvents » Carbon tet, TCE, Freon No longer used due to health/regulatory issues Estimated \$129M unfunded environmental liabilities

IG-14-021

(A-12-011-00)


National Aeronautics and Space Administration OFFICE OF INSPECTOR GENERAL

Audit of NASA's Environmental Restoration Efforts

Current KSC Process

Dual solvent process » Cleaning – Vertrel MCA (DFP and *trans*-DCE) » Analysis – HFE-7100 Has led to at least two contamination sites DFP 20 year GWP = 4170 $CO_2 eq (CH_4 = 86)$

Green Solvents Project Objective

Identify and evaluate environmentally benign cleaning technologies for space and aviation systems capable of cleaning to level 25A (NVR < 1.0 mg/ft²) as per KSC-C-123J

- Other considerations
 - » Toxicity
 - » Flammability/LOX compatibility
 - » Expense

Initial Research

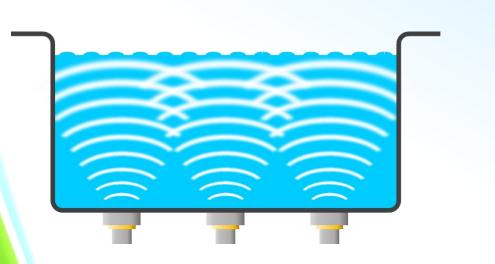
Greener solvents

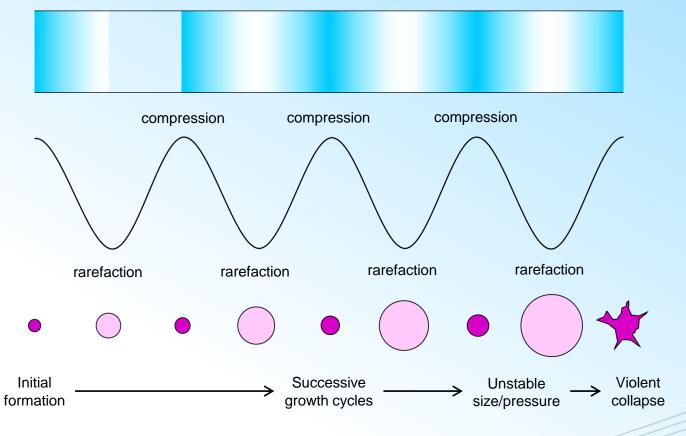
- » Halogenated solvents intentionally avoided
- » 23 solvents initially tested; narrowed down to five

Plasma

- » Used for surface activation, etching, polymer coating, etc.
- Supercritical carbon dioxide
 - » Used for polymer processing, natural product extraction, aerogel production, etc.

Experimental Approach

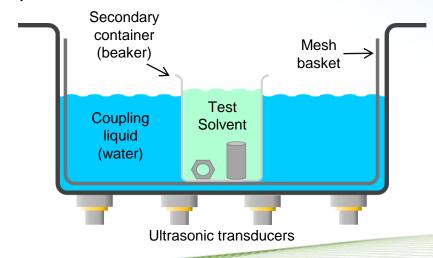

- Small parts w/ complex geometries
- Contaminated with individual contaminants or a "witch's brew" of all five
 - » Krytox 240AC
 - » Braycote 601EF
 - » Mil-PRF-83282
 - » Mil –H-5606
 - » Dioctyl sebacate
- Gravimetric analysis used to calculate cleaning efficiencies



$$\frac{m_2 - m_3}{m_2 - m_1} * 100\% = \% E$$

 m_2 = contaminated mass m_3 = experimentally cleaned mass m_1 = initial mass

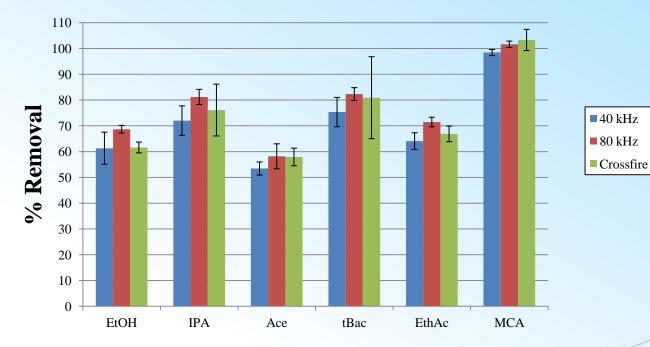
Ultrasonic Solvent Cleaning -Introduction

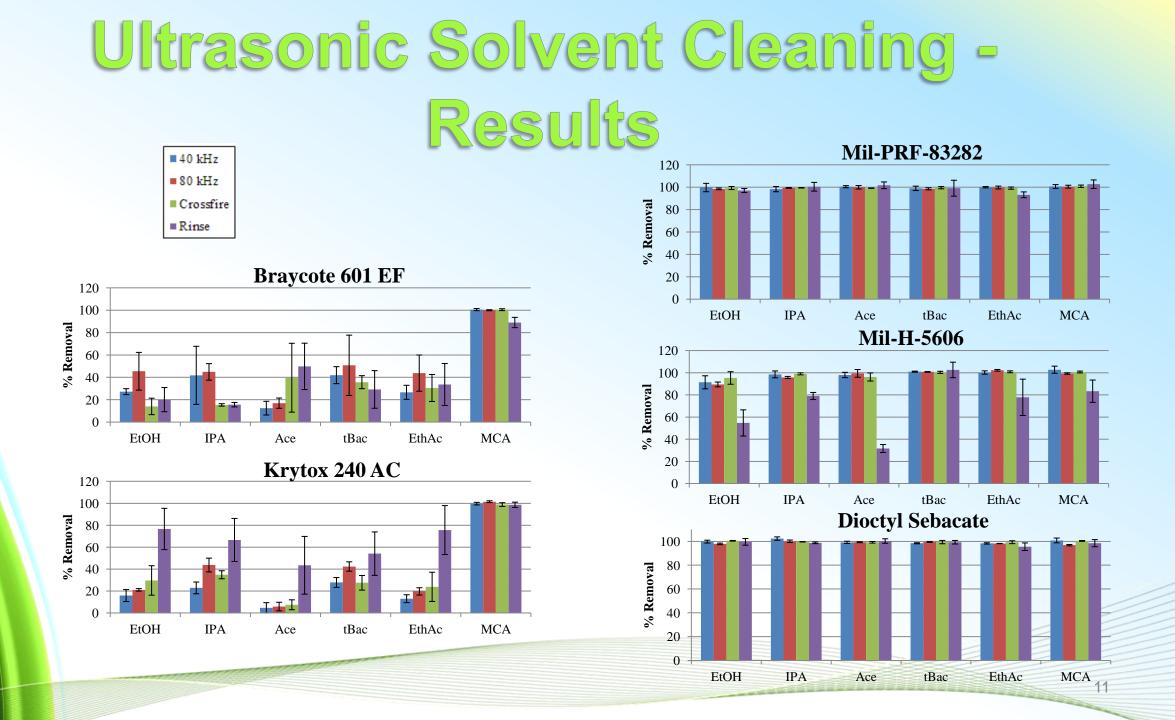


Ultrasonic Solvent Cleaning -Method

Ultrasonic solvent cleaning parameters:

- » Solvents tested: ethanol, 2-propanol, ethyl acetate, tert-butyl acetate, acetone
- » Ultrasound frequency: 40 kHz, 80 kHz, Crossfire (alternating between 40 & 80 kHz)



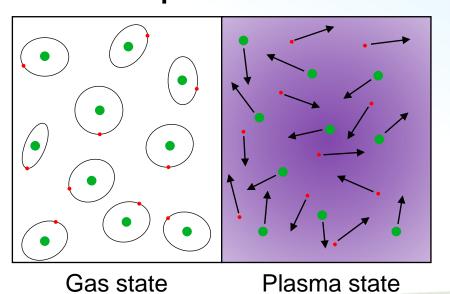

Sonicated for 5 min. in 50 ml of solvent

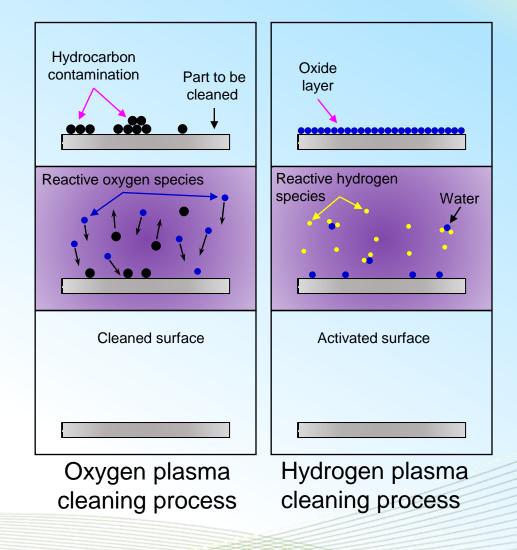
Ultrasonic Solvent Cleaning -Results

- None of the solvents matched Vertrel
- Frequency had little effect
- Ultrasonic agitation did not produce adequate cleaning

Witches Brew Removal

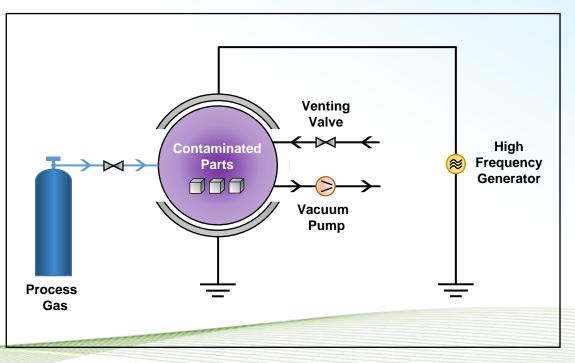
Ultrasonic Solvent Cleaning -Conclusions


- Hydraulic fluids (hydrocarbon-based) were able to be fully removed by ultrasonic solvent cleaning.
 - » No significant differences in solvent selection or ultrasound frequency were observed.
- Fluorinated greases were not effectively removed.
 - » Ultrasonic solvent cleaning did not improve contaminant removal, in general.
 - » No clear trends based on either solvent or frequency were observed
- Samples passed both KSC and third party NVR analysis


Cleaning parameters	Witch's brew deposited, mg		KSC NVR, mg	PFC NVR, mg
EtOH, 5	13.61	13.69	-0.08	0.58
min, 80 kHz	11.93	12.21	-0.28	0.25

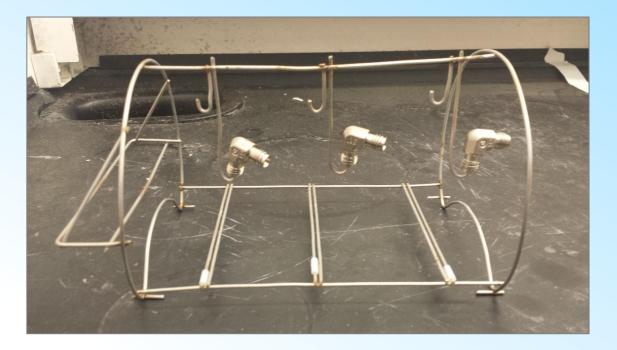
Plasma Cleaning - Introduction

Ionized gas

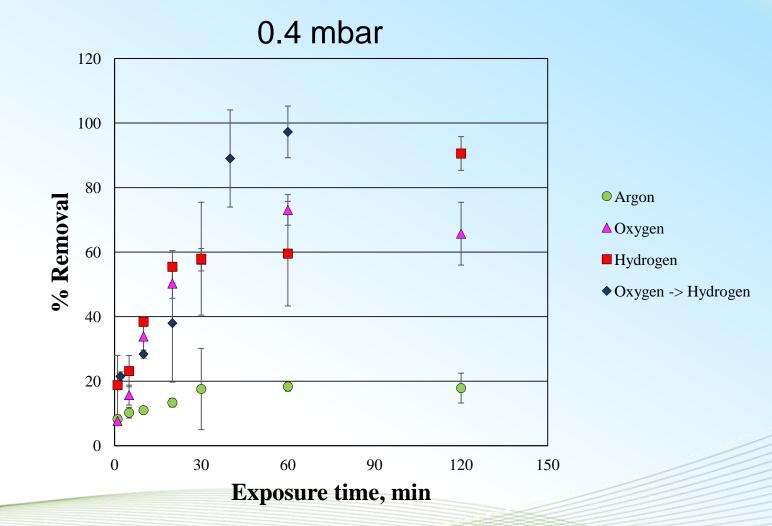

 Sun, lightning, St. Elmo's fire
 Creates high energy/highly reactive species

Plasma Cleaning - System

Diener Pico system
40kHz, 200W plasma generator
Three supply gas connections

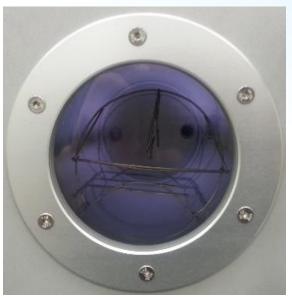


Plasma Cleaning – Method


Plasma cleaning parameters:

- » Pressure: 0.1 & 0.4 mbar
- » Exposure time: 5 120 min
- » Gas type: argon, hydrogen, nitrogen, oxygen

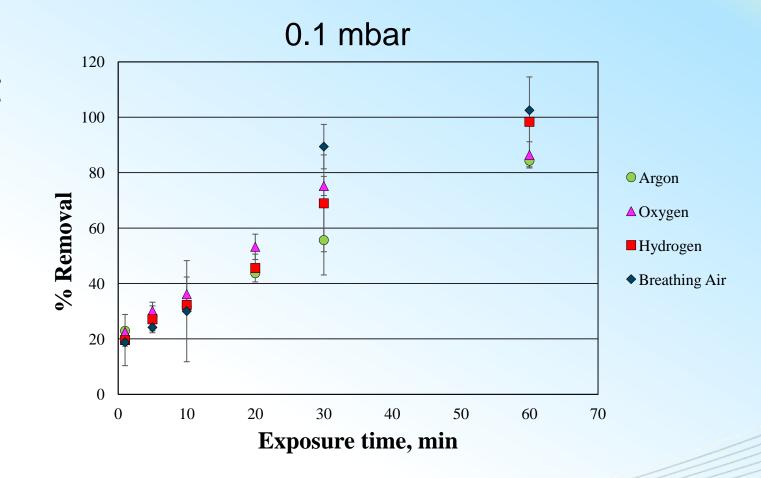
Plasma Cleaning - Results


 Cleaning time has large influence
 Reactive gases had better results

Pressure Effect on Plasma

Plasma generated at 0.4 mbar was not as vibrant as 0.1 mbar

0.8 mbar



Plasma Cleaning - Results

Time had significant effect on cleaning % All gases improved at lower pressure Breathing air performed extremely well

Plasma Cleaning - Conclusions

Lower pressures are more effective for contaminant removal.

- » Higher pressures are suspected of 'quenching' the plasma formation.
- Breathing air and hydrogen were effective process gases removing approximately 100% of the deposited contaminant in 60 min.
- Samples failed KSC NVR analysis but passed third party analysis

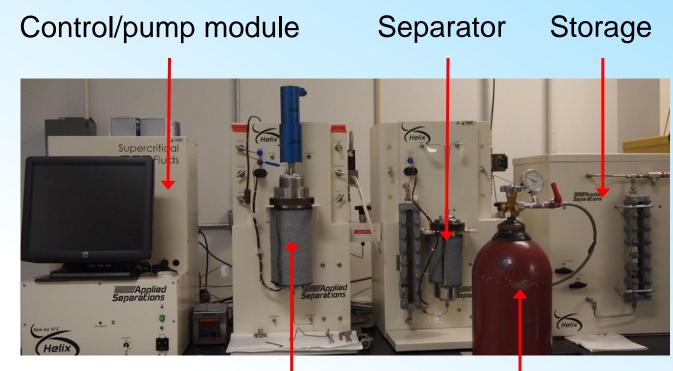
Cleaning parameters	Witch's brew deposited, mg	Witch's brew removed, mg	KSC NVR, mg	PFC NVR, mg
Air, 60 min,	13.89	12.89	1.00	0.30
0.1 mbar	16.37	13.81	2.56	0.40

SCCO₂ Cleaning - Introduction

Liquid/gas hybrid Sormed above P_c and T_c (7.39 MPa, 31.1 °C for CO₂) Solvent power can be tuned by adjusting P and T Co-solvents can be used to increase solvent power This process <u>does not</u> generate CO_2

Supercritical region Liquid Solid D Pressure, Critical Point Gas Triple Point Temperature, T

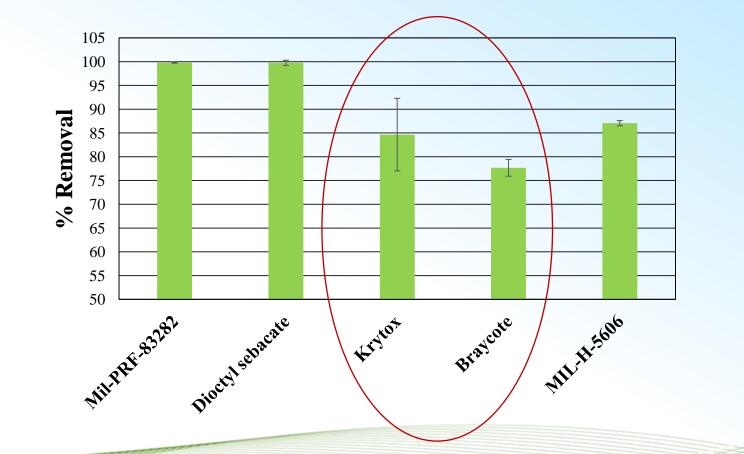
Typical phase diagram


SCCO₂ Cleaning - Method

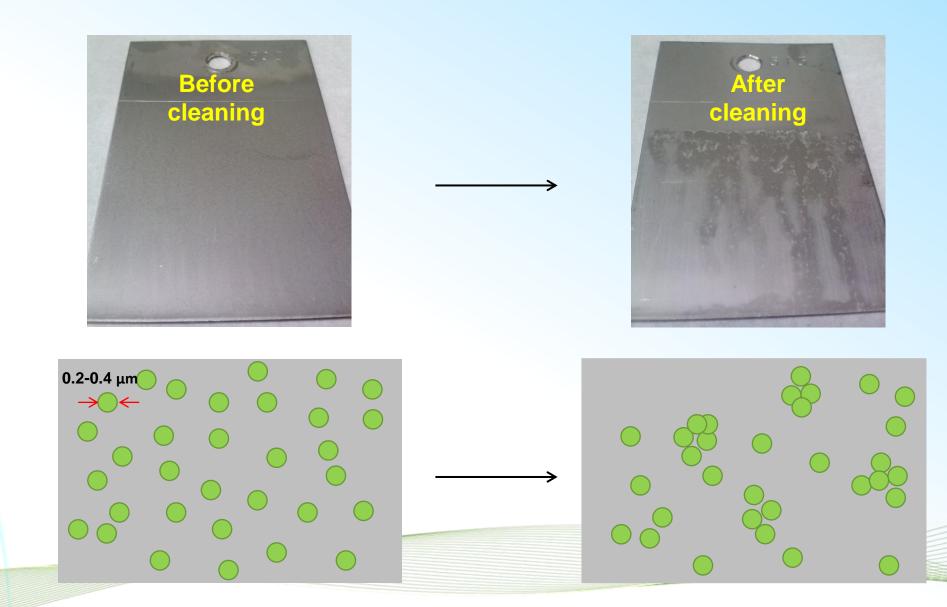
Stractor parameters:

- » Temperature: 35, 50, 75, 100 °C
- » Pressure: 82.8, 138, 276, 414 bar
- » Exposure time: 5, 30, 45, 60 min
- Impeller speed: 0, 500, 750, 1000 rpm

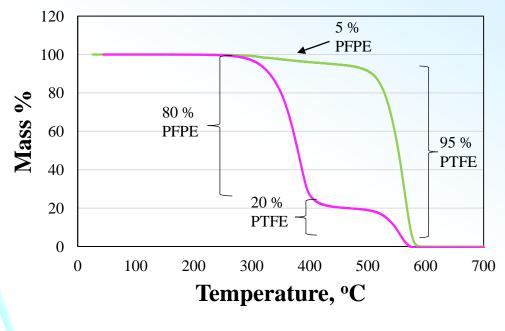
Sample basket

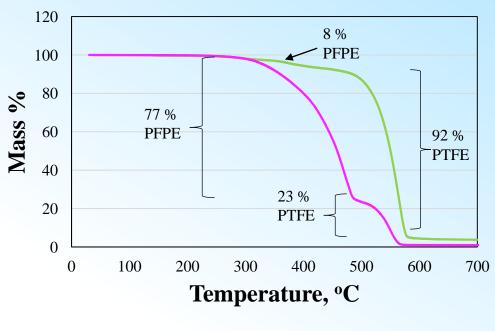

Extractor CO₂ cylinder

Helix laboratory-scale system from Applied Separations



SCCO₂ Individual Contaminant Analysis


Residual Contaminant Analysis


System Parts after Extraction of Krytox 240 AC

Residue Analysis by TGA

-Krytox Residue -Krytox As-Received

-Braycote Residue -Braycote As-Received

SCCO₂ Cleaning - Conclusions

- Effective at removing hydrocarbon and fluorinated greases
- Ineffective at removing particles
- Density is the critical parameter rather than pressure or temperature individually
- Neither co-solvents nor continuous flow reactions improved cleaning efficiencies
- Both samples failed KSC NVR analysis, however one passed third party analysis

Cleaning parameters	Witch's brew deposited, mg	Witch's brew removed, mg	KSC NVR, mg	PFC NVR, mg
Batch, 6000 psi,	11.70	9.60	2.10	0.93
35°C, 60min	12.42	9.80	2.62	2.36

Technology Comparison

	Toxicity	Cleaning	LOX Compatible	Environ. Impacts	Flammability	Scalability	Upfront Costs	Lifetime Costs
Vertrel MCA								
Alternative Solvents								
Plasma								
Supercritical CO ₂								

- All three technologies are able to be scaled up.
 - » Large scale systems are commercially available for solvent and plasma cleaning.
 - » Custom system design is necessary to scale up SCCO₂ cleaning.

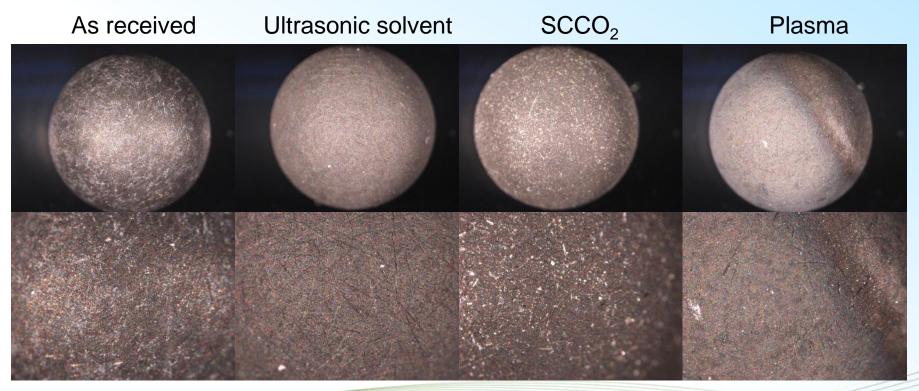
Future work

Explore plasma's ability to activate/passivate metals
Investigate ways to remove particles in SCCO₂

- » Electrokinetics
- » Mechanical agitation
- » Sonic agitation
- » Surfactants

In-situ contamination monitoring
Next-level scale up testing
In-depth economic analysis
Full-scale implementation

Acknowledgements


This research was funded by NASA GSDO/21st Century Launch Complex Team Members:

- » Dr. Paul Hintze NASA (paul.e.hintze@nasa.gov)
- » Dr. Kathleen Loftin NASA (<u>kathleen.b.loftin@nasa.gov</u>)
- » Dr. Douglas Tomlin NASA (douglas.j.tomlin@nasa.gov)
- » Dr. Robert DeVor VENCORE (<u>robert.w.devor@nasa.gov</u>)
- » Dr. Heather Grandelli
- » Dr. Phillip Maloney (phillip.r.maloney@nasa.gov)

Thank you for your attention!

Soft Goods Compatibility

4 materials tested: Neoprene, Buna-N, Teflon, and Viton
 Analyzed for changes in hardness, mass, diameter, and circularity

Neoprene pre- and post-exposure.

Soft Goods Compatibility – Summary

- Solvents and plasma decrease mass
 SCCO₂ adds mass
 Generally, shape is not affected
 No overall trends in
- Δ hardness

		Durometer	Hardness	Mass	Diameter	Circularity
Type of Cleaning Test	Material	Before	After	Δm, g	∆d, in	Δc
	Buna-N	80A	83A	-0.00216	neg	neg
Ultrasonic Solvent	Viton	82A	87A	-0.00023	neg	neg
Olirasonic Solveni	Teflon	66D	67D	-0.00037	0.0012	0.0009
	Neoprene	86A	82A	-0.00084	neg	neg
	Buna-N	81A	80A	0.00199	neg	neg
8000	Viton	84A	81A	0.00817	0.0014	neg
$SCCO_2$	Teflon	66D	63D	0.00007	0.0008	0.0008
	Neoprene	82A	80A	0.00119	neg	neg
	-					
	Buna-N	86A	87A	-0.00258	neg	neg
	Viton	85A	84A	-0.00269	neg	neg
Plasma	Teflon	66D	65D	-0.01986	neg	0.0015
	Neoprene	88A	82A	-0.00367	0.0013	neg

Third Party Verification Summary

Process Description	Test method cleaning parameters	Witch's brew deposited, mg	Witch's brew removed by cleaning, mg	KSC determined NVR	PFC determined NVR
"True cleaned"	n/a	0	n/a	0	0.33
"True cleaned"	n/a	0	n/a	0	1.33
Contaminated but not cleaned	n/a	11.03	n/a	11.03	4.7
Contaminated but not cleaned	n/a	11.57	n/a	11.57	4.31
Cleaned by Ultrasonication	Ethanol, 5 min, 80 kHz	13.61	13.69	-0.08	0.58
Cleaned by Ultrasonication	Ethanol, 5 min, 80 kHz	11.93	12.21	-0.28	0.25
Cleaned by SCCO ₂	Batch process, 6000 psi, 35°C, 60 min	11.7	9.6	2.1	0.93
Cleaned by SCCO ₂	Batch process, 6000 psi, 35°C, 60 min	12.42	9.8	2.62	2.36
Cleaned by plasma	Breathing air plasma, 60 min, 0.1 mbar, 100% power	13.89	12.89	1	0.3
Cleaned by plasma	Breathing air plasma, 60 min, 0.1 mbar, 100% power	16.37	13.81	2.56	0.4