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Thermal Energy Storage (TES) 

• TES should play an important role in the energy portfolio of the near 

future, improving overall energy usage efficiency by 

– Capturing process / waste heat 

– Regulating the temperature of sensitive electronics 

– Building heating / cooling 

– Increasing capacity for power generation 



Total yearly electricity generation, U.S.1 

1 U.S. Energy Information Administration (EIA), Electric Power Monthly with Data for July 2014, Sep 2014. 



Need for energy storage: Solar irradiance 

(Tampa, Florida) 
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The need for energy storage 

• Renewable energy technologies, including solar thermal power, suffer from 

intermittency: 

– Insolation limited to daylight hours 

– Cloud cover / other atmospheric variability 

• Thermal energy storage (TES) strategies are needed to account for this 

intermittency 

• Typical storage strategy involves harnessing peak energy output for use during lag 

periods. 



Types of TES 

• Sensible heat 

– Stored by heating a certain mass of material of constant phase (i.e., does not melt) 

– Depends on the specific heat capacity of the material 

• Latent heat 

– Stored by heating a mass of material through a phase transition (solid-solid, solid-
liquid, solid-gas, liquid-gas)—phase change materials (PCMs) 

• Thermochemical reaction 

– Stored by heating a compound / compounds until it (reversibly) undergoes an 
endothermic chemical reaction 



Generalized phase change process 



Latent heat storage: Higher storage density 



Anhydrous salt PCMs  

• Inexpensive 

• Resistant to oxidative degradation 

• Relatively easy to handle in the molten state 

• High latent heats of fusion 

• Major drawback—low thermal conductivity 

– NaCl: 0.8 W/m-K [1] 

– NaNO3: 0.6 W/m-K [2] 

– Compare to metal oxides (10-100 W/m-K) or metals (>100 W/m-K) 

2M. V. Smirnov, V. A. Khokhlov, and E. S. Filatov, "Thermal-Conductivity of Molten Alkali-Halides and Their Mixtures," Electrochimica Acta, vol. 32, 
pp. 1019-1026, Jul 1987. 
3G. J. Janz, Molten salts handbook. New York,: Academic Press, 1967. 
 

 



Heat transfer enhancement 

 
• Variety of methods have been explored to enhance heat transfer in 

PCMs 

– Extended surfaces 

– Encapsulation 

– Additives / matrices for heat transfer enhancement 



High conductivity additives / matrices 

• Limited work has been done with metal matrices impregnated with salt PCMs, 

but these have been shown to corrode under oxidation by nitrate salts (as has 

graphite in some cases) 

• Main issues: 

– Material compatibility 

– Maintenance of additive dispersion 



Other modes of heat transfer? 

• Convective heat transfer can dominate the melting process, so much of 

the design of PCM containment or extended surfaces has attempted to 

enhance convective transfer 

• Radiative transfer? 

– Prior work (e.g., Drotning [4]) has focused on use of additives to increase 
solar availability—that is, radiative transfer in the UV-visible-NIR 

– The potential of thermal (infrared) radiative transfer remains largely 
unexplored for PCMs 

4W. D. Drotning, "Optical-Properties of Solar-Absorbing Oxide Particles Suspended in a Molten-Salt Heat-Transfer Fluid," 
Solar Energy, vol. 20, pp. 313-319, 1978. 
 



Research strategy 

Improve charging / discharging times for heat storage units by using novel 

enhanced inorganic salt thermal storage media by 

• Inclusion of higher conductivity nanoparticles to increase thermal conductivity 

• Inclusion of nanoparticles (very low concentration) to increase absorption 

coefficient of relatively transparent salts (e.g. chlorides) 

• Inclusion of soluble materials to increase absorption coefficient (e.g., CuCl in 

NaCl) 

 

Increasing radiative transfer 



Experimental methods 



Diffusivity / conductivity enhancement 



Potential for conductivity enhancement 

δ_s t( ) 2 k_s
T_s T_c-( )

λ ρ
t


















0.5

:= δ_m t( )
2 k_m

1 ϕ-

T_s T_c-( )

λ ρ
t


















0.5

:=

0 1 10
4

 2 10
4



0

0.01

0.02

δ_s t( )

δ_m t( )

t

 

• Approximately 30% reduction in discharge 

time 

6R. Siegel, "Solidification of Low Conductivity Material Containing Dispersed High Conductivity Particles," 
International Journal of Heat and Mass Transfer, vol. 20, pp. 1087-1089, 1977. 

 



Novel concept: Additives to enhance thermal 

radiative heat transfer 

Ivanpah SEGS7 

7 M. Strauss, “Take a Look at the World’s Largest Solar Thermal Farm," Smithsonian Magazine, Nov 2012 
(http://www.smithsonianmag.com/science-nature/take-a-look-at-the-worlds-largest-solar-thermal-farm-91577483/). 

• NOTE: transparent to infrared (thermal) radiation in region of 0.5 to 20.0 µm 

• We add IR active compounds to absorb thermal radiation, improve overall heat transfer rates 



Planck distribution 
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Planck distribution

2.0 – 13.0 m
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Absorptivity enhancement, CuO 



Absorptivity enhancement, CuCl 



High temperature IR reflectance apparatus 

• Test of efficacy of IR absorption in molten salt: CoCl2 absorption coefficient 



Absorption coefficient, molten salt 



Simulation: Optimum absorption coefficient 



Conclusions / future work 

• Demonstrated conductivity enhancement for nitrate salt-based TES 

systems currently in use in solar thermal applications 

• Quantified infrared absorption enhancement in higher temperature 

chloride salts 

• Next steps: 

– Modeling of transient heat transfer process 

– Determination of optimum additive / PCM composition for scale-up 
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